Skip to main content

Conjoint Probability

1. Discrete Random Variables

1.1 Definition

Let X,YX, Y be two discrete Random Variables with finite co-domains. Let U={x1,,xn},V={y1,,ym}U=\{x_1,\dots,x_n\},V=\{y_1,\dots,y_m\} be the possible values of X and Y respectively We define the random variable Z=(X,Y)Z=(X, Y) as a joint random variable defined by the law:

(x,y)U×V,P(Z=(x,y))=P(X=xY=y)\forall (x,y)\in U\times V,\quad \mathcal{P}(Z=(x,y))=\mathcal{P}(X=x \wedge Y=y)

1.2 Matrix Form

We can express the joint probabilities compactly in the following form:

M=(p1,1p1,mp2,1p2,mpn,1pn,m)M=\begin{pmatrix} p_{1,1}&\dots&p_{1,m}\\ p_{2,1}&\dots&p_{2,m}\\ \vdots &\ddots&\vdots\\ p_{n,1}&\dots&p_{n,m} \end{pmatrix}

With i,{1,,n},j{1,,m},pi,j=P(X=xiY=yj)\forall i,\in\{1,\dots,n\},\forall j\in\{1,\dots,m\},\quad p_{i,j}=\mathcal{P}(X=x_i \wedge Y=y_j)

If XX and YY are independent, then:

pi,j=P(X=xi)P(Y=yj)p_{i,j}=\mathcal{P}(X=x_i)\cdot \mathcal{P}(Y=y_j)

1.3 Joint Distribution Matrix

Let MM be a matrix with positive entries.

MM is said to be a joint distribution matrix if its entries sum to one:

i,jMi,j=1\sum_{i,j}M_{i,j}=1

1.4 Event Probability

Let AU×VA\subseteq U\times V

We have:

P((X,Y)A)=(x,y)AP(X=xY=y)\mathcal{P}((X,Y)\in A)=\sum_{(x,y)\in A}\mathcal{P}(X=x\wedge Y=y)

1.5 Marginal Distribution

1.5.1 Marginal Distribution of XX

The marginal distribution of XX is the probability distribution of X determined from (X,Y)(X, Y)

xU,P(X=x)=yVP(X=xY=y)\forall x\in U,\quad \mathcal{P}(X=x)=\sum_{y\in V}\mathcal{P}(X=x\wedge Y=y)

1.5.2 Marginal Distribution of YY

The marginal distribution of YY is the probability distribution of X determined from (X,Y)(X, Y)

xV,P(Y=y)=xUP(X=xY=y)\forall x\in V,\quad \mathcal{P}(Y=y)=\sum_{x\in U}\mathcal{P}(X=x\wedge Y=y)

1.6 Conditional Distribution

1.6.1 Conditional Distribution of XX knowing Y=yY=y

xU,P(X[Y=y]=x)=P(XY=y=x)=P(Y=yX=x)=P(X=xY=y)P(Y=y)\forall x\in U,\quad \mathcal{P}(X[Y=y]=x)=\mathcal{P}(X_{Y=y}=x)=\mathcal{P}(Y=y \mid X=x)=\frac{\mathcal{P}(X=x \wedge Y=y)}{\mathcal{P}(Y=y)}

1.6.2 Conditional Distribution of YY knowing X=xX=x

yV,P(Y[X=x]=y)=P(YX=x=y)=P(Y=yX=x)=P(X=xY=y)P(Y=y)\forall y\in V,\quad \mathcal{P}(Y[X=x]=y)=\mathcal{P}(Y_{X=x}=y)=\mathcal{P}(Y=y \mid X=x)=\frac{\mathcal{P}(X=x \wedge Y=y)}{\mathcal{P}(Y=y)}

2. Continuous Real Random Variables

2.1 Definition

Let X,YX, Y be two continuous Random Variables with a joint probability density function fX,Yf_{X,Y}. We define the random variable Z=(X,Y)Z=(X, Y) as a joint random variable defined by the law:

(x,y)R2,FZ(Z(x,y))=P(XxYy)=xyfX,Y(u,v) dvdu=],x]×],y]fX,Y(u) du\forall (x,y)\in \mathbb{R}^2,\quad F_Z(Z \le (x,y))=\mathcal{P}(X \le x \wedge Y\le y)=\int_{-\infty}^x\int_{-\infty}^y f_{X,Y}(u,v)\space\text{dvdu}=\iint_{\mathopen]-\infty,x\mathclose]\times \mathopen]-\infty,y\mathclose]}f_{X,Y}(u)\space \text{du}

2.2 Joint Distribution Function

A function hL1(R)h\in\mathscr{L}^1(\mathbb{R}) is said to be a joint distribution function if:

  1. hh is positive: h0h\ge 0

  2. The integral of hh is 11:

    h1=R2h(u)du=RRh(x,y) dydx=1\lVert h \rVert_1=\iint_{\mathbb{R}^2}h(u)\text{du}=\int_{\mathbb{R}}\int_{\mathbb{R}}h(x,y)\space \text{dydx}=1

2.4 Event Probability

Let ABA\subseteq \mathcal{B}

We have:

P((X,Y)A)=Ah(u) du\mathcal{P}((X,Y)\in A)=\iint_{A}h(u)\space \text{du}

2.5 Marginal Distribution

2.5.1 Marginal Distribution of XX

The marginal distribution of XX is the probability distribution of XX determined from (X,Y)(X, Y)

xR,fX(x)=yRfX,Y(x,y)dy\forall x\in \mathbb{R},\quad f_X(x)=\int_{y\in\mathbb{R}}f_{X,Y}(x,y)\text{dy}

2.5.2 Marginal Distribution of YY

The marginal distribution of YY is the probability distribution of YY determined from (X,Y)(X, Y)

yR,fY(y)=xRfX,Y(x,y)dx\forall y\in \mathbb{R},\quad f_Y(y)=\int_{x\in\mathbb{R}}f_{X,Y}(x,y)\text{dx}

2.6 Conditional Distribution

2.6.1 Conditional Distribution of XX knowing Y=yY=y

It is the conditional distribution of XX with the knowledge that Y=yY=y, it is defined as:

xR,fX[Y=y](x)=fXY=y(x)=fX,Y(x,y)fY(y)\forall x\in \mathbb{R},\quad f_{X[Y=y]}(x)=f_{X_{\mid Y=y}}(x)=\frac{f_{X,Y}(x,y)}{f_Y(y)}

2.6.2 Conditional Distribution of YY knowing X=xX=x

It is the conditional distribution of YY with the knowledge that X=xX=x, it is defined as:

yR,fY[X=x](x)=fYX=x(y)=fX,Y(x,y)fX(x)\forall y\in \mathbb{R},\quad f_{Y[X=x]}(x)=f_{Y_{\mid X=x}}(y)=\frac{f_{X,Y}(x,y)}{f_X(x)}

3. Conditional Expectation

3.1 Definition

Let XX and YY two random variables.

The conditional expectation of YY given X=xX=x, noted E[YX=x],\mathbb{E}[Y\mid X=x], is the expected value of YY with the additional information that X=xX=x. It is equal to:

x,E[YX=x]=E[YX=x]\forall x,\quad \mathbb{E}[Y\mid X=x]=\mathbb{E}[Y_{\mid X=x}]

3.2 As a random variable

By introducing the function φ\varphi defined as follow:

φ:RRxE[YX=x]\begin{align*} \varphi:&\mathbb{R}\rightarrow \mathbb{R}\\ &x\rightarrow \mathbb{E}[Y\mid X=x] \end{align*}

We will define the conditional expectation of YY given XX, denoted by E[YX]\mathbb{E}[Y\mid X] as following:

E[YX]=φ(X)\mathbb{E}[Y\mid X]=\varphi(X)

To calculate its distribution, see Function on a random variable

3.3 Law of Total Expectation

Let Y,XY,X two random variables.

We have the following:

E[Y]=E[E[YX]=EX[EY[YX]]\mathbb{E}[Y]=\mathbb{E}\left[\mathbb{E}[Y|\mid X\right] =\mathbb{E}_X\left[\mathbb{E}_Y[Y\mid X]\right]

To avoid confusion, we noted:

  • EY\mathbb{E}_Y to emphasise that the expectation is calculated against YY
  • EX\mathbb{E}_X to emphasise that the expectation is calculated against XX

4. Conditional Variance

4.1 Definition

Let XX and YY two random variables.

The conditional variance of YY given X=xX=x, noted V[YX=x],\mathbb{V}[Y\mid X=x], is the variance of YY with the additional information that X=xX=x. It is equal to:

x,V[YX=x]=V[YX=x]\forall x,\quad \mathbb{V}[Y\mid X=x]=\mathbb{V}[Y_{\mid X=x}]

4.2 As a random variable

By introducing the function φ\varphi defined as follow:

φ:RRxV[YX=x]\begin{align*} \varphi:&\mathbb{R}\rightarrow \mathbb{R}\\ &x\rightarrow \mathbb{V}[Y\mid X=x] \end{align*}

We will define the conditional variance of YY given XX, denoted by V[YX]\mathbb{V}[Y\mid X] as following:

V[YX]=φ(X)\mathbb{V}[Y\mid X]=\varphi(X)

To calculate its distribution, see Function on a random variable

3.3 Law of Total Variance

Let Y,XY,X two random variables.

We have the following:

V[Y]=V[E[YX]]+E[V[YX]]=VX[EY[YX]]+EX[VY[YX]]\mathbb{V}[Y]=\mathbb{V}\left[\mathbb{E}[Y\mid X]\right]+\mathbb{E}\left[\mathbb{V}[Y\mid X]\right] =\mathbb{V}_X\left[\mathbb{E}_Y[Y\mid X]\right]+\mathbb{E}_X\left[\mathbb{V}_Y[Y\mid X]\right]

To avoid confusion, we noted:

  • EY,VY\mathbb{E}_Y,\mathbb{V}_Y to emphasise that the expectation and variance are calculated respectively against YY
  • EX,VX\mathbb{E}_X,\mathbb{V}_X to emphasise that the expectation and variance are calculated respectively against XX